Algorithms for NLP

Classification |l

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

£ Minimize Training Error?

= Aloss function declares how costly each mistake is

ti(y) =y, y})

= E.g.0loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z 0; (arg}rfnax WTfi(Y))

(2

= This is a hard, discontinuous optimization problem

p 3 Examples: Perceptron

= Separable Case

e 8 =« % o0 8 vl 2%

1 1 1 1 1 1 | I
- 0 ®» 1 2 2 ¥ 3I @ 4 & 5 B

Eﬁ Examples: Perceptron

= Non-Separable Case

1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4] 3 6

p 3 Objective Functions

= What do we want from our weights?
= Depends!

= So far: minimize (training) errors:

7

Z step (wai(yf) — max WTfi(y)>

YFEY;

T 1 T
_ w £(y") — maxw f;(y)
" This is the “zero-one loss” Z yEy,

= Discontinuous, minimizing is NP-complete

= Maximum entropy and SVMs have other
objectives related to zero-one loss

g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)

= Use the scores as probabilities: Make
P(|X W) _ exp(wa(y)) < positive
Y >y exp(wE(y)) Normalize

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(yF)))
>y exp(w ! f;(y))

L(w) = 10 [P(yilx;,w) = Y log (

=Y <waz~(y;f) —log) exp(wai(y)))
i Yy

p 3 Maximum Entropy |

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= .. in practice, though, posteriors are pretty peaked

» Regularization (smoothing)
max (WTfi(Yf) — log ZGXD(WTfi(Y))) —k||w||?
) y

min kl|w|[*=>" (Wsz’(Y%k) — log Zexp(wai(y))>
y

1

Eﬁ Log-Loss

= |[f we view maxent as a minimization problem:

min k|lw|]24+>" - (WTfi(yE‘) —log " exp(wai(y)))
) y

= This minimizes the “log loss” on each example

| ((((((((((((TECPREDTH =

— (wai(yf) — log Zexp(wai(y))> = —log P(y;|x;, W)
y

step (wai(yff) — MaX WTfi(Y)>
YEY;

= One view: log loss is an upper bound on zero-one loss

p 3 Maximum Margin

Note: exist other
choices of how to
penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2
Vi,y, w! £(yD)+eE > w fi(y) + 4(y)

1
min J||w||*+C 3¢

= Cis called the capacity of the SVM — the smoothing
knob

Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We'll come back to this later

p 3 Remember SVMs...

= \We had a constrained minimization
1o
rpnggllwll +C§ij£z
Vi,y, w f;(y5) +&>w! fi(y) + 4(y)
= _..but we can solve for ¢,

vi, & = max (Wsz'(Y) + fz'(}’)) —w ! f(y)
= Giving

min
W

W2+ 03 (max (w6 + 63) - w8)

N| B~

g H | nge I—OSS Plot really only right

in binary case

= Consider the per-instance objective:

min klwlP+3 (m;x (w'f(y) + t:(v)) - WTfi(YE‘))

= This is called the “hinge loss” \

= Unlike maxent / log loss, you stop
gaining objective once the true label
wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient

decent (e.g. Pegasos: Shalev-Shwartz et

Tf(yi) - f;
al 07) wi(y}) — max (w' ()

E& Max vs “Soft-Max” Margin

= SVMs:

min KlIwlP=3 (W) — max (w () + ()
1 _ _
——
You can make this zero

= Maxent:

min k| lw|[2 =Y (WTfi(Yf) —log) exp (WTfi(YD)
5 y

... but not this one

= Very similar! Both try to make the true score better
than a function of the other scores

= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”

E& Loss Functions: Comparison

" Zero-One Loss

eeeeeeeeeeee
111111111111111111111111
xxxxxxxxxx

> step <wai(yff) — max Wsz‘(Y))

YFEY;

7

= Hinge

> (WTEGD — max (W) + ()

(

= |log

3 (wai(y;k) —log) exp (Wsz‘(Y>>)
i Yy
w ! f;(y?) — ;’;fyé (WTfi(Y))

Structure

E& Handwriting recognition

I Slid4 = brace

Sequential structure

[Slides: Taskar and Klein 05]

}fi CFG Parsing

X Y
S
/\
NP VP
B i " ™
DT NN VBD NP
The screen was) B
The screen was NP PP
a sea of red N

DT NN IN NP

| | | |
a sea of NN

red

Recursive structure

% Bilingual Word Alignment

X vertu
de
les
What
- . . nouvelle
What is the an_t|C|pated is propositions
cost of collecting fees th:)
under the new proposal? anticipate i quel
) est
coIIectl: f le
En vertu de nouvelle feeg cout
propositions, quel est le under zge"“
cout préVL_l de perception the perception
de les droits? new de
proposal le
\drmts

Combinatorial structure

p 3 Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

U

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions

% Named Entity Recognition

fla,y) = Y, vy + Y flw,u)

(Yi—1,Yi)€Y (zi,yi)
f(yi—layi)
Yi—1 Yi
ORG ORG - ORG—ORG ORG --- - LOC
f(iUz‘,yi)

Apple Computer bought Smart Systems Inc. located in Arkansas.
Lg

E& Bilingual word alignment

Z w' f(z,y) f(x,y) = Z /(@ yjk)

Yik€yY Yik €Y

What les

thi: nouvelle f (x, yj Lo)

o propositions
anticipated

co:: quel ® 3ssociation

llecti est
collecting le g
fees " position

d cout
e prevu = orthography

new perception
proposal de
? le
droits
?

E& Efficient Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeY(x)

at least approximately, and you want to learn w

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not

% Structured Margin (Primal)

Remember our primal margin objective?

min Lwl3+CY (mgx (T fi(y) + (y)) — Mﬁ-@f))

Still applies with structured output space!

% Structured Margin (Primal)

Just need efficient loss-augmented decode:

y = argmax, (w' f;(y) + 4;(y))

mln —HwHQ—I-CZ () + 4 (y) — waz(y;'k))

—w+cZ i) = fi(y}))

Still use general subgradient descent methods! (Adagrad)

& Structured Margin (Dual)

= Remember the constrained version of primal:
min l||w||2 +C> ¢
w,& 2 i '
Vi,y w' Hi(yD) > w fi(y) + 4(y) - &

* Dual has a variable for every constraint here

}f@ Full Margin: OCR

= \WWe want:

argmaxy w'f(HZ&8,y) = ‘brace”

= Equivalently:
w | f(HZHE , “brace”) > w ' f(HZME, “aaaaa”)

w | f (I , “brace”) > w ! f((I&IEE ,“aaaab”)
>a lot!

w | {(H&EE , “brace”) > w ! {(AZME , “zzzz7"

p 3 Parsing example

= \WWe want:

arg maxy WTf(‘Itwas red’ ,y) — A§g

cCD

= Equivalently:
WTf(‘It was red, A§§~) > WTf(‘It was red’, AfﬁF))

Tf(Itwasred A) > WTf(Itwasred, AﬁB)
>a lot!

WTf(‘Itwasred Aa) > WTf(Itwasred, GEiF)

J

p 3 Alignment example

= We want:
arg maxy w ! f(Whatisthe' v} — 0P
y ‘Quel est le’ ’ 3:3

= Equivalently:

WTf(‘Whatisthe 1“;) > WTf(‘Whatisthe leel A

2
‘Quel est le’ ’3...3 ‘Quel est le’’ X)

T £/ 'What is the’ 1%®1 T £ ("What is the’
w f(‘Quel est le’ ’3...§) > W f(‘Quel estle’’ gﬁg) >a IOtl

lee1l . ;, 1 1
WT (What is tr;e’ 2“2) > WTf(What is the ZXZ)
3

‘Quel est | ‘Quel estle’’ 3

}f@ Cutting Plane (Dual)

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:

= Find the most violated constraint for an instance:
vy w ! fi(y?) > w! fi(y) + 4(y)
arg max w ' f;(y) + £:(y)

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)

}& Cutting Plane (Dual)

= Some issues:

= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

» |n practice, works pretty well; fast like perceptron/MIRA,
more stable, no averaging

Summarization Phrase Extraction Parsing
08

o
2

[

o
2

= Adaptive CP
===== MIRA

Bigram Recall

s
=
A,

5 5 10 1
Iteration Iteration Iteration

g Likelihood, Structured

L(w) = —k|[w|[*+)_ (WTfi(nyk) —log " eXD(WTfi(Y)>>
7 y

W) — okw+ Y (fz(y:) -y P(yx»f?;(y))
() y

= Structure needed to compute:
= Log-normalizer

= Expected feature counts

= E.g.if afeatureis an indicator of DT-NN then we need to compute posterior
marginals P(DT-NN | sentence) for each position and sum

= Also works with latent variables (more later)

Comparison

_— 90

.....................
el
o

| 0 |

6

9

Constituency Parsing

12 15 18 0 3

=== Cutting Plane
----- Online Cutting Plane

Margin - opline Primal Subgradient & L,
= Online Primal Subgradient & Lo
) Averaged Perceptron
M1.stake MIRA
Driven Averaged MIRA (MST built-in)

Llhood Stochastic Gradient Descent

Constituency Parsing, Neural CRF

Option O: Reranking

[e.g.
Charniak and
Johnson 03]

Input

X =
“The screen was a sea of red.”

N-Best List
(e.g. n=100)

NP vp

DT NN VBD NP
| | | T
The screen was NP pp

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
DT NN VBD NP
o | —~
The screen was NP PP

Baseline DTSN I N Non-Structured
Parser T

Classification

NP vp

DT NN VBD NP
| | | T
The screen was NP pp

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
DT NN VBD NP
o | —~
The screen was NP PP

AN P
DT NN IN NP

I I
a sea of NN

red

Output

S
/\
NP VP
S T
DT NN VBD NP
| | | T
The screen was NP PP

PR PN
DT NN IN NP
| | | |
a sea of NN
|
red

}f@ Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

S

/\
NP VP

T —
DT NN VBD NP
f (I I I T~) p—
The screen was NP PP
PN PN

DT NN IN NP

| I | \
a sea of NN

\
red

"= Disadvantages:
= Stuck with errors of baseline parser

= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

E‘; M3Ns

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
= |ntegrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

= Constraints factor in the dual along the same structure as the primal;
alphas essentially act as a dual “distribution”

= Various optimization possibilities in the dual

p 3 Example: Kernels

= Quadratic kernels

K(z,2)) = (z-2' 4+ 1)?

™ /
=) wjriw; +2) mpr;+1
1,7 1

~
K(y,y) = (f(y) "f(y") + 1)?

£ Non-Linear Separators

= Another view: kernels map an original feature space to some
higher-dimensional feature space where the training set is
(more) separable

- .
> .
o
" + .
.
. . -
.
.
. ot .
.
o
|® -
.
o
.
" .
.
ot
K
o
o
.
o ot o .,
. *
ot . *.
K i
- .
.
. *.
.,
> .
- ®
e, *
. .
. .
. .
e o o

p 3 Why Kernels?

*= Can’tyou just add these features on your own (e.g. add all
pairs of features instead of using the quadratic kernel)?
= Yes, in principle, just compute them
= No need to modify any algorithms
= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded
representation, e.g. RBF or data-defined kernels [Henderson and Titov
05]

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less
space and time per dot product

= Of course, there’s the cost for using the pure dual algorithms...

